• Thomas Sokollik
  • Distinguished Research Fellow
  • Laser driven particle acceleration
  • Sokollik@sjtu.edu.cn

Assistant Professor and Experimental Group Leader of the 200TW Laser Plasma Group   

About the Group

The main research topics are laser driven particle acceleration and radiation generation. We are using a 200TW laser system (25fs, 5J, 10Hz) to investigate fundamental processes in laser matter interaction. The goal of this research, besides gaining fundamental knowledge is to develop compact accelerators for science and commercial applications. In our facility we are performing experiments on electron acceleration and proton acceleration.

Open Positions:    
We have currently a Postdoc position available on Proton acceleration
We have currently a PhD student position available on Proton acceleration

Postdoc position on Proton acceleration

 The ideal candidate should have:
- PhD in laser or plasma physics, or a related field
- Experience in ultra-intense laser matter interaction (ideally on particle acceleration) 
- Strong background on experimental plasma or laser physics (laser diagnostics, data acquisition, LabVIEW)

Please send your CV along with 2 letters of recommendation to: Sokollik@sjtu.edu.cn

PhD student position 
The ideal candidate should have:
- Experience on laser or plasma physics
- Strong technical skills 
- Experience in programing (preferable LabVIEW) and data analysis
Please send your CV to: Sokollik@sjtu.edu.cn


Proton Acceleration

By tightly focusing the ultra-intense laser pulse onto a solid target a compact proton source can be generated. The proton energies are in the range of several tens of MeV (Mega Electron Volt). The several orders of magnitude higher acceleration gradients compared to conventional accelerators makes this technology a promising candidate for a new generation of particle accelerators. The challenges of this research is to increase the proton energies even further and to make it a reliable and stable source for applications.


Principle of Proton Acceleration

Electron Acceleration

Similar to proton acceleration the laser beam is focused onto a target. For electron acceleration gas targets are used to generated relativistic electron bunches (several hundred MeV up to GeV). The compact size of the accelerator makes it an ideal technology for future accelerators and for table-top free electron lasers. These are also the main challenges of this research field.

About my person

Previous positions

- Postdoctoral researcher at Lawrence Berkeley National Laboratory (2009-2012)
- Postdoctoral researcher at the Max-Born-Institute, Berlin, Germany (2008-2009)
- Ph.D. in Physics, Max-Born-Institute, Berlin,Germany (2005-2008)
- Diploma (Master) at the University of Würzburg, Germany (1999-2005)

Research interests  

- Ultra-short, high intense laser matter interaction
- Laser driven particle acceleration
- X-ray generation

Research activities

- Laser driven electron acceleration (Laser plasma accelerator) 
- Proton imaging of intense laser matter interaction at mass-limited targets and thin foils
- Proton source and proton beam characterization
- Generation of High Harmonics in gases and on surfaces


- 1000 Young Talents Plan Fellow (2013)
- Springer Theses Prize "Recognizing Outstanding Ph.D. Research" (2011)





T. Sokollik, “Investigations of field dynamics in laser plasmas with
proton imaging”: Springer Theses "Recognizing Outstanding Ph.D. Research", XIII (Eds.),  (2011)



 J. van Tilborg, B. H. Shaw, T. Sokollik, S. Rykovanov, S. Monchocé, F. Quéré, Ph. Martin, A. Malvache, and W. P. Leemans, Optics Letters, 38, 4026 (2013)

G. R. Plateau, C. G. R. Geddes, D. B. Thorn, M. Chen, C. Benedetti, E. Esarey, A. J. Gonsalves, N. H. Matlis, K. Nakamura, C. B. Schroeder, S. Shiraishi, T. Sokollik, J. van Tilborg, Cs. Toth, S. Trotsenko, T. S. Kim, M. Battaglia, Th. Stoehlker, and W. P. Leemans, Phys. Rev. Lett. 109, 064802 (2012)

C. Lin, J. van Tilborg, K. Nakamura, A. J. Gonsalves, N. H. Matlis, T. Sokollik, S. Shiraishi, J. Osterhoff, C. Benedetti, C. B. Schroeder, Cs. Tóth, E. Esarey, and W. P. Leemans, Phys. Rev. Lett. 108, 094801 (2012)

A. J. Gonsalves, K. Nakamura, C. Lin, D. Panasenko, S. Shiraishi, T. Sokollik, C. Benedetti, C. B. Schroeder, C. G. R. Geddes, J. van Tilborg, J. Osterhoff, E. Esarey, C. Toth and W. P.Leemans, , Nature Physics, 7, 862 (2011)

T .Sokollik, T. Paasch-Colberg, K. Gorling, U. Eichmann, M. Schnürer, S. Steinke, P.V. Nickles, A. Andreev and W. Sandner, New Journal of Physics, 12, 113013 (2010)

T. Sokollik, M. Schnürer, S. Steinke, P. V. Nickles, W. Sandner, M. Amin, T. Toncian, O. Willi, and A. A. Andreev, Phys. Rev. Lett. 103 (13), 135003-135004 (2009) (Cover letter)

A. Henig, S. Steinke, M. Schnürer, T. Sokollik, R. Hörlein, D. Kiefer, D. Jung, J. Schreiber, B. M. Hegelich, X. Q. Yan, J. Meyer-ter-Vehn, T. Tajima, P. V. Nickles, W. Sandner, and D. Habs, Phys. Rev. Lett. 103, 245003 (2009)

T. Sokollik, M. Schnürer, S. Ter-Avetisyan, P. V. Nickles, E. Risse, M. Kalashnikov, W. Sandner, G. Priebe, M. Amin, T. Toncian, O. Willi, and A. A. Andreev,  Appl. Phys. Lett. 92, 091503 (2008)

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, Phys. Rev. E 74, 056604 (2006)

S. Ter-Avetisyan, M. Schnürer, P. V. Nickles, M. Kalashnikov, E. Risse, T. Sokollik, W. Sandner, A. Andreev, and V. Tikhonchuk, Phys. Rev. Lett. 96,145006 (2006)